Mi a különbség a kiterjesztett valóság (AR) és a virtuális valóság (VR) közt? A két technológia nem ugyanazt takarja, bár kiegészítik egymást – hívja fel rá a figyelmünket Ágoston Tibor, a tradAR ügyvezetője.

„A VR-t úgy a legegyszerűbb elképzelni, mintha a zárt ujjú tenyerünket a szemünk elé tennénk. Kiszakadunk a fizikai világunkból, minden, amit látunk, számítógép által generált. Próbáljunk meg egy ilyen világban mozogni és nekimegyünk a falnak, vagy átesünk egy széken. Természetesen megvannak a VR-ben való mozgásnak is a maga technológiai megoldásai, de a VR alkalmasabb tantermi felkészítésre, képzésre vagy szimulációra. Az AR átlátszó lencséjű szemüveget használ, melyek közé felülről vetít digitális tartalmakat, kiegészítve a fizikai világunkat. Mivel tudatában maradunk a világunknak, szabadon interakcióba léphetünk azzal és akár fizikai munkát is végezhetünk” – mondja Tibor.

A turizmusban, de az oktatásban is végtelen perspektívákat nyit a kiterjesztett valóság. Nem mindegy, hogy a gyerekek a szív működésének leírásával, vagy annak 3D-s (animált) modelljével találkozhatnak a biológiakönyv felett, netán az emberi szerveket tekinthetik át több rétegben egy virtuális csontvázra vetítve.

Fotó: tradAR

„A Microsoft Hololens 2 eszköz saját AppStore-jában elérhető például Galaxy Explorer program. Ennek köszönhetően a nappalim közepén megismerhetem, körbejárhatom a galaxisunkat, naprendszerünket, illetve égitestjeinket. Az 5 éves kislányom körülbelül 5 perc alatt érzett rá az eszköz kezelésére, miközben én angolról fordítottam, hogy mit hall. Másnap az óvodából hazajövet mutatott egy rajzot, melyen a naprendszerünk szerepelt. Lerajzolta az égitesteket, ahogy a Nap körül keringenek; az égitestek száma stimmelt és színhelyesen színezte ki a Napot, Földet és Marsot. Anélkül, hogy bármi komolyabb előismerete lett volna. Ez az ereje a tananyag vizualizálásának. Mit érhetünk el akár a fizikához hasonló »rettegett« tantárgyak oktatása során, ha vizualizáljuk a láthatatlant: a mágneses tereket, vagy a rádióhullámok terjedését?” – meséli Ágoston Tibor.

A két, egymást kiegészítő technológia még hasznosabb a munka világában, ahol a gyártás, a műszaki üzemeltetés és karbantartás, illetve a munkavállalók felkészítésének szerves részét képezheti.

A távsegítség-szolgáltatás célja például, hogy a legtapasztaltabb szakembereknek ne kelljen másik telephelyre, országba utazni, hanem a terepen lévő állomány szemszögéből láthassák és gyári szintű minőségben orvosolhassák a problémát. A kiterjesztett valóság segítségével a felhasználók akár saját kezűleg is elháríthatják az adott berendezés hibáját.

„A pusztán verbálisan közölt információk, akarva-akaratlanul, de biztosan torzulnak. Azáltal, hogy a verbális információkat képi információval egészítjük ki, sokkal hatékonyabb támogatást tudunk elérni. A kiszállások számának csökkentésével a cégek óriási költségtömeget spórolhatnak meg, akár az utazás, repülőjegy, hotel, napidíj, taxi és üzemanyag díjain. Emellett csökken a nem várt leállások ideje, a probléma hamarabb elhárítható, így hamarabb helyezhető vissza adott eszköz a termelésbe, munkába” – nyomatékosítja Ágoston Tibor.

Csak rajtunk múlik, szivattyút vagy harckocsit szerelünk vele

Az üzleti életben a technológiák alkalmazási területei sokrétűek: hasznukat vehetjük az üzemeltetés, hibaelhárítás, a kiképzés, a munkafolyamatok és az infrastruktúra online vagy offline dokumentációja során.

Idővel a céges oktatásban is egyre többen alkalmaznak majd digitális eszközöket, lévén, hogy a vizualizációnak óriási ereje van a 2D-s tananyaggal szemben. A munkaerőpiacra frissen belépő generáció pedig már egyenesen elvárja a modern technológiák meglétét egy munkaadótól. Az új-zélandi hadsereg gépjárműves szakiskolájában végzett tesztek alapján, az AR-támogatott felkészítés során 36 százalékkal csökkent az ember okozta hibák száma, de csökkent az oktatói beavatkozást igénylő esetek száma és nőtt a tananyag megértése is.

A tradAR által képviselt Manifest telepíthető AR-képes Android eszközre, iPadre vagy a céleszközgyártók hardvereire, pl. a Microsoft Hololens 2 vagy MagicLeap fejen hordható eszközre is. A szoftvermegoldás célja, hogy bárki olyan lépésről lépésre vezető üzemeltetési, karbantartási, kiképzési/oktatási eljárásokat készíthessen, melyeket végigkövetve a legtapasztalatlanabbak is önállóan, hiba nélkül, tényleges digitalizációs folyamat során végezhetnek el bármilyen komplex feladatot.

„Teljesen mindegy, hogy búvárszivattyún, egy pékség kifli-szállítószalagjának egyik meghajtómotorján, vagy egy harckocsin dolgozunk (3D-s modellen vagy a fizikai eszközön), az aköré térben horgonyzott eljárásokat követve hibamentesen és nagy magabiztosággal nézhetünk szembe a feladatainkkal” – hangsúlyozza Ágoston Tibor.

A szoftver már közel két éve támogatja a HungaroControl légtérellenőrző radarjainak üzemeltetését, de a Nemzeti Közszolgálati Egyetemen is alkalmazzák a mérnökhallgatók felkészítése során. Több iparágban (az energiaszolgáltatás, autógyártás, hadiipar terén) is folynak az egyeztetések, így várhatóan a közeljövőben tovább bővül a hazai felhasználók listája.